dw

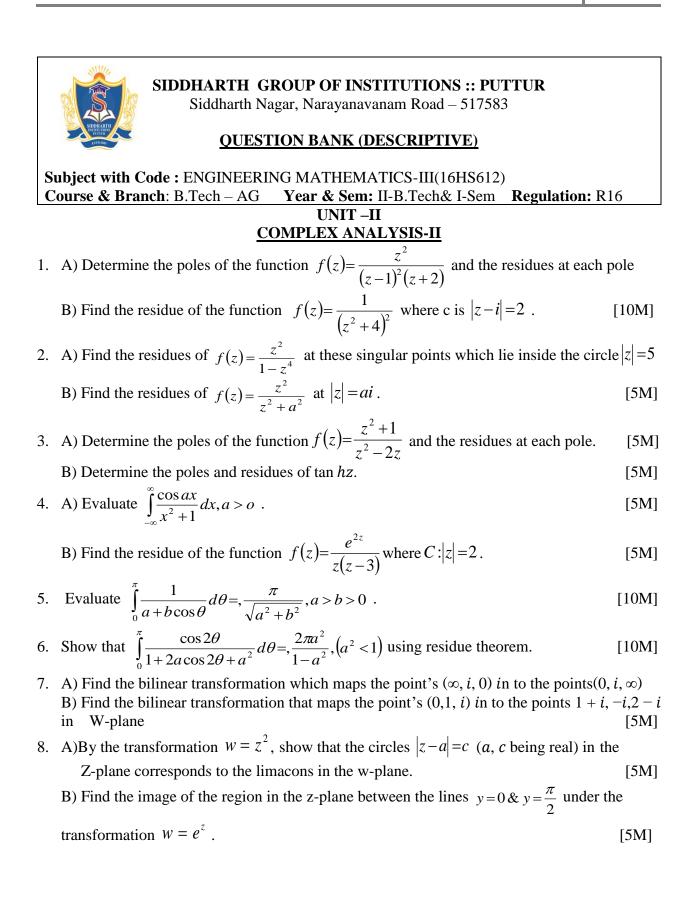
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –I <u>COMPLEX ANALYSIS-I</u>


1.	A) Show that $w = \log z$ is analytic everywhere except at the origin and find $\frac{dw}{dz}$.	[5M]
	B) If $f(z)$ is the analytic function of z prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\log f(z) = 0$.	[5M]
2.	A) Show that $u = \frac{x}{x^2 + y^2}$ is Harmonic.	[5M]
	B) Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$.	[5M]
3.	A) Determine p such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\left(\frac{px}{y}\right)$.	[5M]
	B) Find all the values of k, such that $f(x) = e^x (\cos ky + i \sin ky)$.	[5M]
4.	A) If $f(z)=u+iv$ is an analytic function of z and if $u-v=e^{x}(\cos y-\sin y)$,	
	Find $f(z)$ in terms of z.	[5M]
	B) Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$.	[5M]
5.	A) Show that $(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.	[5M]
	B) Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$.	[5M]
6.	A) Evaluate the line integral $\int (y - x - 3x^2 i) dz$ where c consists of the line segments for	rom
	z=0 to $z=i$ and the other from $z=i$ to $z=i+1$.	[5M]
	B) Evaluate $\int_{c} \frac{\cos z - \sin z}{(z+i)^3} dz$ with $C: z = 2$ using Cauchy's integral formula.	[5M]
7.	A) Evaluate $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$ using Cauchy's integral formula.	[5M]
	B) Evaluate $\int_{c} \frac{dz}{z^{3}(z+4)}$ where c is the circle $ z = 2$ using Cauchy's integral formula.	[5M]

8. Evaluate
$$\int_{0}^{1+3i} (x^2 - iy) dz$$
 along the paths (i) $y = x$ (ii) $y = x^2$. [10M]

9. A) Evaluate using Cauchy's integral formula $\int_{c} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz$ around the circle c : |z| = 1. [5M]

B) Evaluate
$$\int_{c} \frac{\log dz}{(z-1)^3}$$
 where $c: |z-1| = \frac{1}{2}$ using Cauchy's integral formula. [5M]

10. Let C denote the boundary of the square whose sides lie along the lines $x = \pm 2$, Where c is described in the positive sense, evaluate the integrals (i) $\int_{c} \frac{e^{-z}}{\left(z - \frac{\pi i}{2}\right)} dz$ (ii) $\int_{c} \frac{\cos z}{z(z^2 + 8)} dz$

[5M]

9. A)Find the bilinear transformation which maps the points (∞ , *i*, 0) *i*n to the points (-1, -1, 1) in w-plane. [5M] B) Find the bilinear transformation that maps the point's (1, i, -1) in to the points (2, i, -2)in w-plane [5M] 10. A) The image of the infinite strip bounded by $x=0 \& x=\frac{\pi}{4}$ under the transformation $w = \cos z$ [5M] B) Prove that the transformation $w = \sin z$ maps the families of lines x = y = constantinto two families of confocal central conics.

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –III

1.	Find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places by bisection methods.	nod.
2.	Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method.	[10M]
3.	Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method.	[10M]
4.	Find the root of the equation $xe^x = 2$ using Regula-falsi method.	[10M]
5.	Find a real root of the equation $xe^x - \cos x = 0$ using Newton-Raphson method.	[10M]
6.	Using Newton-Raphson Method	
	A) Find square root of 10. B)Find cube root of 27.	[10M]
7.	From the following table values of x and $y = tanx$ interpolate values of y when	
	x = 0.12 and x = 0.28	[10M]
	x 0 10 0 15 0 20 0 25 0 30	

х	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

8. A) Using Newtons forward interpolation formula., and the given table of value

Х	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

Obtain the value of f(x) when x=1.4

[5M]

- B) Evaluate f(10) given f(x) = 168,192,336atx = 1,7,15 respectively, use Lagrange Interpolation. [5M]
 9. A) Use Newton's Backward interpolation formula to find f(32) given f(25) = 0.2707, f(30) = 0.3027 f(35) = 0.3386, f(40) = 0.3794 [5M]
 - B) Find the unique polynomial P(X) of degree 2 or less such that P(1) = 1 P(2) = 27 PA = (A using Learning intermolection formula
 - P(1) = 1 P(3) = 27, P4 = 64 using Lagrange's interpolation formula. [5M]
- 10. A) Using Lagrange's interpolation formula, find the parabola passing through the points (0,1),(1,3) and (3,55) [5M]

B) For x=0,1,2,3,4;
$$f(X) = 1,14,15,5,6$$
 find $f(3)$ using forward difference table. [5M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –IV

							UN	11 -1	v							
1.	Fit the c	urve y	$=ae^{bt}$	to th	ne fol	lowin	g data	a.								[10M]
	Γ	Х	0	1		2	3	4	4	5		6	7	8		
		Y	20	30	0	52	77		35	211		326	550	10	52	
	Ŀ		_		-	-										
2.	A)Fit th	ie expor	nential	l curve	e of tl	ne for	m y	$=ab^{\gamma}$	fo	r the	dat	a				[5M]
	X		1				2			3				4		
	Y		7				11			17				27		
B)	Fit a str	aight lii	ne y=a	a+bx fi	rom t	he fol	lowin	ng dat	a							[5M]
		C	•					U								
	Х	0			1			2			3			4		
	Y	1			1.8			3.3			4.:	5		6.3		
3.	Fit a sec	ond deg	gree po	olynor	nial t	o the	follov	wing o	lata	by th	e n	nethod	of l	east sq	uares	[10M]
	Х	0			1			2			3			4		
	Y	1			1.8			1.3			2.:	5		6.3		
	B) Fit a	straight	line y	∕=ax+l	b froi	n the	follov	wing	lata							[5M]
		1	1			1										
	Х	6	7	7		8		8		8		9	9		10	
	Y	5	5	4		5		4		3		4	3		3	
4. A	A) Fit a P		arve to		ollow		1				1		7			[5M]
	Х	1		2		3	4	1	5		e	5				
										-			4			
	Y	2.9		4.26		5.21		5.10	6.8			7.50]	_		
E							e foll		g dat	a by	the	metho	od of	least	square	es [5M]
	X	0	1	-	2	3		4								
	Y	1	5)	10	22		38								

	3	185 7.0 4 33.1	239 11.1 5 65.2	285 19.6 6 127.4	[5M]
e of the form 3.3 son's $\frac{3}{8}$ rule	$\frac{y = ab^x \text{ for}}{3}$ 15.4	4 33.1	5	6	 [5M]
son's $\frac{3}{8}$ rule	3 15.4				[5M]
son's $\frac{3}{8}$ rule					
son's $\frac{3}{8}$ rule			65.2	127.4	
son's $\frac{3}{8}$ rule		dr			
		Trapizoidal rul		l	[5M] [5M] rule.
$-\frac{dx}{dx}$				I	[10 M]
l rule and Sim	pson's $\frac{1}{3}$ rule				
on's $\frac{3}{8}$ rule a	nd compare the	result with act	ual value.		
$e^{x}dx$ by Sin	npson's $\frac{1}{3}$ rule	e with 10 subdiv	visions.		[5M]
					[5M]
pproximately,	by Trapizoidal,	rule, $\int_{0}^{1} (4x - 3x)$	$(x^2)dx$ by taking	g n=10.	[5M]
$e^{-x^2}dx$ takin	ng h = 0.25 usin	ng Simpson's $\frac{1}{3}$	l– rule 3		[5M]
	nge into 10 ec $\frac{dx}{dx}$ I rule and Simon's $\frac{3}{8}$ rule a $\frac{de^{x}}{dx}$ by Simog xdx , using pproximately,	nge into 10 equal parts ,find $\frac{1}{x}dx$ I rule and Simpson's $\frac{1}{3}$ rule on's $\frac{3}{8}$ rule and compare the $\frac{1}{8}e^{x}dx$ by Simpson's $\frac{1}{3}$ rule $\frac{1}{3}$ rule $\frac{1}{3}e^{x}dx$, using Trapezoidal rule pproximately,by Trapizoidal	nge into 10 equal parts ,find the value of $\int_{0}^{\pi/3} dx$ I rule and Simpson's $\frac{1}{3}$ rule. on's $\frac{3}{8}$ rule and compare the result with actual $e^{x} dx$ by Simpson's $\frac{1}{3}$ rule with 10 subdivides $\log x dx$, using Trapezoidal rule and Simpson pproximately,by Trapizoidal rule, $\int_{0}^{1} (4x - 3x)^{2} dx$	$\frac{1}{x} dx$ I rule and Simpson's $\frac{1}{3}$ rule. on's $\frac{3}{8}$ rule and compare the result with actual value. $\int e^{x} dx$ by Simpson's $\frac{1}{3}$ rule with 10 subdivisions. og $x dx$, using Trapezoidal rule and Simpson's rule by 10	nge into 10 equal parts ,find the value of $\int_{0}^{\pi/2} \sin x dx$ using Simpson's $\frac{1}{3}$ $\frac{1}{2} dx$ I rule and Simpson's $\frac{1}{3}$ rule. on's $\frac{3}{8}$ rule and compare the result with actual value. $e^{x} dx$ by Simpson's $\frac{1}{3}$ rule with 10 subdivisions. og $x dx$, using Trapezoidal rule and Simpson's rule by 10 sub divisions. pproximately,by Trapizoidal rule, $\int_{0}^{1} (4x - 3x^{2}) dx$ by taking n=10.

[5M]

[5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –V

- 1. a) Tabulate y (0.1), y (0.2), and y (0.3) using Taylor's series method given that [5M] $y^1 = y^2 + x$ and y(0) = 1
 - B) Find the value of y for x=0.4 by Picard's method given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=0 [5M]
- 2. Using Taylor's series method find an approximate value of y at x = 0.2 for the D.E $y^1 2y = 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution.[10M]
- 3. A)Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method [5M]

B) Obtain y(0.1) given
$$y^1 = \frac{y - x}{y + x}$$
, y(0)=1 by Picard's method. [5M]

- 4. A) Given that $\frac{dy}{dx} = 1 + xy$ and y (0) = 1 compute y(0.1), y(0.2) using Picard's method [5M]
 - B) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1) =2 and find y(2). [5M]

5. A)Using Runge-Kutta method of second order, compute y(2.5) from $y^1 = \frac{y+x}{x}$ y(2)=2, taking h=0.25

B) Solve numerically using Euler's method $y' = y^2 + x$, y(0)=1. Find y(0.1) and y(0.2)

- 6. A)Using Euler's method, solve numerically the equation y¹=x+y, y(0)=1 [5M]
 B) Solve y¹= y-x², y (0) =1 by Picard's method up to the fourth approximation. Hence find the value of y (0.1), y (0.2). [5M]
- 7. A) Use Runge- kutta method to evaluate y(0.1) and y(0.2) given that $y^1=x+y$, y(0)=1 [5M]

B) Solve numerically using Euler's method $y' = y^2 + x^2$, y(0) = 1. Find y(0.1) and y(0.2) [5M]

8. A)Using R-K method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1 Find y(0.2) and y(0.4) [6M] B)Obtain Disord's assent approximate solution of the initial value method.

B)Obtain Picard's second approximate solution of the initial value problem

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0$$
[4M]

9. Using R-K method of 4th order find y(0.1), y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy, y(0) = 2$ 10. A)Find y(0.1) and y(0.2) using R-K 4th order formula given that $y^1 = x^2 - y$ and y(0) = 1 [5M]

0. A)Find y(0.1) and y(0.2) using R-K 4th order formula given that $y^1=x^2-y$ and y(0)=1 [5M] B) Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4 given that y = 0 when x = 0. [5M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III (16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

<u>UNIT-I</u>

1)	If $f(z) = z^2$ for all z				[]
	A) Continuous at $z =$		B) Not Continuous a	t z = i		
	C) Continuous at $z =$		D) None			
2)	If $z = x + iy$ then sin				[]
	A) $\sin x \cosh y - \cos y$	•	B) $\sin x \cosh y + i \cos y$	•		
	C) $\sin x \cosh y + \cos y$	$s x \sin h y$	D) $\sin x \cosh y - i $	$\cos x \sin hy$	_	_
3)	If $f(z) = z ^2$ is				[]
	A) Analytic everywh		B) not analytic every	where		
	C) Not differentiable		D) None			-
4)	Cauchy-Riemann equ		-		L	Ţ
	A) $u_x = v_y \& u_y = -$		B) $u_x = v_y \& u_y = 1$			
	C) $u_x = v_x \& u_y = -$		D) $u_x = -v_y \& u_y =$	$= -v_x$		
5)	The period of $\sin z$ i	S			[]
	A) 0	B) π	C) $\frac{\pi}{2}$	D) 2π		
6)	Functions which satis	sfy Laplacian equation	s in a region R are call	ed	[]
	A) analytic	B) not analytic	C) Harmonic	D) None		
7)	An analytic function	with constant modulus			[]
	A) constant function	(n B) function of x	C) function of y	D) None		
8)	Imaginary part of cos	szis			[]
	A) sin x coshy	B) $-\sin x \sin hy$	C) sin hy coshy	D) $\cos x \cos x$	hy	
9)	$\sin iz =$				[]
	A) –isin hy	B) sin hy	C) icos hy	D) isin hy		
10)	The value of k so that				[]
	A) 0	B) -1	C) 2	D) none		
11) If $w = \log z$ is analyt	ic everywhere except a	at $z =$		[]
	A) 0	B) 1	C) 2	D) 3		
12)	If $z = x + iy$ then co	SZ =			[]
	A) $\sin x \cosh y - \cos y$	s x sin hy	B) $\cos x \cosh y - i s$	in x sin hy		
	C) $\cos x \cosh y + \cos x$		D) $\sin x \cosh y - i $	cos x sin hy		
13)	The value of k so that	$x^3 + 3kxy^2$ may be h	armonic is		[]
	A) 0	B) −1	C) 2	D) none		

	.					
14)			ected domain D&C is a	any simple	r .	1
	Curve then $\int f(Z)dz$		(\mathbf{C})	D)	L.]
	A) 0	B) -1	C) 2	D) none		-
15)			re orthogonal if $u + iv$		[.]
10	A) analytic	B) not analytic	C) Harmonic	D) None	r ·	1
10)	If $u + iv$ is analytic the A) analytic	B) not analytic	C) Harmonic	D) None	L.]
17)	A harmonic function is		C) Harmonic	D) None	г [.]	1
17)			C) analytic	D) None	L .	1
18)	/	th constant imaginary pa	•	_ /	[]
	A) constant	B) analytic	C) Harmonic	D) None	-	
19)	If $f(z)$ is analytic and	l equals $u(x, y) + iv(x)$	(x, y) then $f^1(z) =$		[]
	A) $u_x + iv_x$	B) $v_y - iv_x$	C) $v_y + iv_x$	D) none		
20)	$\cos iz =$				[]
	A) $-isin hy$	· · ·	C) icos hy	D) cos hy	- .	-
21)	The period of $\sin z$ is			-	[]
	A) o	B) π	C) $\frac{\pi}{2}$	D) 2π		
22)	If $\underset{z \to z_0}{Lt} f(z)$ exists then	n that limit is	-		[]]
		B) Unique C) Tw	vice D) No	ne		
	Solution set of $\sin z =$	_	,		[]]
	A) $z = 2n\pi$	B) $z = n\pi$	C) $z = (2n+1)\frac{\pi}{2}$	D) None		
		2) 10	$2^{(2n+1)}$	2)110100		
24)	If $z = x + iy$ then \overline{co}	s z =			[]
	A) $\cos \overline{z}$	B) $\sin z$	C) $\cos z$	D) None		
	, ,	_		D) None		
25)	Imaginary part of sin	<i>z</i> =			[]]
	A) sin x coshy	B) $-\sin x \sin hy$	C) sin hy coshy	D) $-\cos x \sinh x$	У	
26)	If $f(z) = z^3$ is				г [.]]
_0)	A) Analytic everywhe	ere	B) not analytic every	where	L.	l
	C) Not differentiable		D) None			
27)	Arg z is		,		[]]
	A) Differential in eve	ry domain	B) Not differential an	y where		
	C) Differential only a	-	D) None			
28)	Polar form of Cauchy	-Riemann equations an	re		[]]
	A) $ru_r = v_\theta, rv_r = -$	$u_{ heta}$	B) $ru_r = v_\theta$, $rv_r = u_\theta$	9		
	C) $ru_r = -v_{\theta}, rv_r =$	$-u_{\alpha}$	D) $ru_r = -v_\theta$, $rv_r =$	<i>u</i> _o		
	, , , , , , , , , , , , , , , , , , ,	0	<i></i> / <i>r </i> / <i>r</i>	0	- .	-
29)	If $f(z) = z^2 z$ is				L.]
	A) Not differentiable (A)		B) not analytic every	where		
	C) Analytic everywhe	ere	D) None			

30)	Real part of cos z is				[1
ŕ	1	B) $-\sin x \sin hy$	C) sin hy coshy	D) $\cos x \cos x$	hy	-
31)	The period of tanz is		_		[]
	A) o	B) π	C) $\frac{\pi}{2}$	D) 2π		
32)	If $f(z) = \operatorname{Re}(z)$ is		2		[]
	A) analytic	B) <i>not</i> analytic	C) not differentiable	D) None		
33)	A point at which $f(z)$) fails to be analytic is			[]
	A) Singular point of <i>f</i>	• •	B) null point of $f(z)$			
	C) Non-Singular poin	t of $f(z)$	D) none		_	_
34)	If $f(z) = \sinh z$ is				[]
	A) not analytic everyw		B) Analytic everywhe	ere		
	C) Not differentiable		D) None		r	
35)	The period of the fun		$\sim \pi$		[]
	A) 0	B) π	C) $\frac{\pi}{2}$	D) 2π		
36)	If $z = x + iy$ then $\overline{\sin x}$				[]
	A) $\sin z$	B) $\sin \overline{z}$	C) $\cos z$	D) None		
37)	Solution set of $\cos z = 0$	Dis			[]
	A) $z = 2n\pi$	B) $z = n\pi$	C) $z = (2n+1)\frac{\pi}{2}$	D) None		
	r^2 v^2		2			
38)	$\frac{x^2}{\sinh^2\beta} + \frac{y^2}{\sinh^2\beta} =$				[]
		D) 1	C) 0	\mathbf{D}) 2		
	A) 1	B) -1	C) 0	D) 2		
39)	If $\sin(\alpha + i\beta) = x + iy$	then $\frac{x^2}{2} + \frac{y^2}{2}$	- =		ſ	1
,					L	L
	A) 1	B) -1	C) 0	D) 2		
40)	If $e^{z} = $				[]
	A) 1	B) $e^{\bar{z}}$	C) 0	D) e^{z}	-	-
	A) 1	D) C	C) U	D) e		

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : ENGINEERING MATHEMATICS (16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

		UN COMPLEX	<u>IT-II</u> ANALV	SIS-II			
1)	If $\lim_{z \to a} f(z)$ does not explanately does not	xist then $z = a$ is		sngularity		[
		B) Removable		lated essentia	1	D) None	e
2)	The function e^z has an					[
-	A) 1	B) ∞	C) 0		D) Not	ne	
3)	A) Pole	uence of poles of a funct B) Removable		s olated essentia	1	D) None	e
4)	The value of $\int_{c} \frac{e^{z}}{(z-3)^{2}}$	dz, C: z = 2 is				[
	A) 1	B) 0	С) <i>π</i> і			D) None	e
5)	The pole of $f(z) = \frac{1}{2}$	$\frac{e^z}{1}$ is]	
	A) 13	B) -10	C) 2,3		D) 0, -	-3	
6)	The pole of $f(z) = \frac{1}{(z-z)}$	$\frac{z}{z}$ is	-,-,-		_, .,	[
,	A) 1,3		C) 2,3		D) –1		
7)	The pole of $f(z) = \frac{1}{(z)}$		0) 2,0		D) 1	, <u> </u> [
')	A) 0,3	$(z-3)^{15}$ B) -1,0	C 22		D) 0, -	_	
0)		<i>, ,</i>	C) 2,3		D) 0, -		
0)	The residue of $f(z) =$	$\frac{1}{(z^2+4)^2}$ at the pole 2 -	- 21 18			[
	A) –32 <i>i</i>	B) 32 <i>i</i>	C) $\frac{1}{32i}$		D) $\frac{-1}{32i}$		
			321		321		
9)	The residue of $f(z) =$	$=\frac{z^2}{z^4-1}$ at the pole $z=1$	l is			[
	A) -4	B) 4 <i>i</i>		C) $\frac{1}{4}$		D) $\frac{-1}{4}$	
10)	A pole of order 1 is ca	lled				ſ	
	A) Simple	B) Not simple		C) Isolated		D) None	e
11)	If $Lt f(z) = \infty$ then	z = a exists is				[
	A) Pole	B) Removable		C) Isolated		D) None	e
		,		·		,	

12) If $\lim_{z \to a} f(z)$ exists finitely the	n $z = a$ is	sngularity	[]
A) Pole	B) Removable	C) Isolated	D) None	
13) The value of $\int_{C} \frac{dz}{z+2} dz$, C:	z = 1 is		[]
A) 1	B) 0	С) <i>π</i> і	D) None	
14) The pole of $f(z) = \frac{e^z}{(z+4)(z+4)}$	$\overline{+1}$ is		[]
A) 0,-4	B) 0,4	C) 1,-4	D) -4,-1	
15) The residue of $f(z) = \frac{e^z}{(z+4)}$	\overline{z} at the pole z=0 is		[]
A) $\frac{1}{4}$	B) 4	C) $-\frac{1}{4}$	D) -4	
16) If $f(z)$ has a simple pole at Z	$= a$ then $\operatorname{Res}_{z=a} f(z) =$		[]
A) 0	B) $\underset{z \to a}{Lt}(z+a)f(z)$	C) $\underset{z \to a}{Lt}(z-a)f(z)$	D) None	
17) Is cross ration of four points inA) Bilinear	variant under the transfo B) Inverse Bilinear	ormation is C) conformal	[D) None]
18) The image of the line $y = c$ un		,]]
A) Parabola	B) ellipse	C) Hyperbola	D) None	
19) The cross ratio of the four point			[]
A) $\frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)}$	B) $\frac{(z_1 z_2)(z_3 z_4)}{(z_2 - z_3)(z_4 - z_1)}$	C) $\frac{(z_2 - z_3)(z_4 - z_1)}{(z_1 - z_2)(z_3 - z_4)}$	D) None	
20) The bilinear transformation ma			[]
A) Inverse points 21) The image of the line $y = c$ un	B) constant der the mapping $W = 0$	C) singular point $OS 7$ is	D) None	1
A) Parabola	B) ellipse	C) Hyperbola	L D) None	J
22) The type of singularity of the f	unction $\frac{1}{1-e^z}$ at $z=2$.	πi is	[]
A) Simple pole	B) Not simple pole	C) Isolated essential	D) None	
23) At $z=0$ $f(z)=\frac{\sin z}{z}$ has a s	ingularity at which is	called	[]
A) Simple pole C) Isolated essential		ot simple pole Removable		
24) The residue of $f(z) = \frac{e^z}{(z-1)z}$	$\frac{1}{2}$ at the pole z=0 is		[]
A) 1	B) -1	C) 0	D) None	

25) The image of the line $x = k$ us A) Parabola	nder the mapping $w = \sin B$) ellipse	t z is C) Hyperbola		[D) None]
26) The pole of $f(z) = \frac{z}{(z+4)^2$	(z-1) is			[]
 A) 0,-4 27) Under the transformation w = A) Entire w-plane 	B) 0,4 z^2 is conformal every B) Origin	C) Infinite strip		D) -4,-1 [D) None]
28) The type of singularity of the	function $\sin \frac{1}{1-z}$ at $z =$	=1 is		[]
A) Simple pole	B) Isolated essential	C) Not simpl	e pole	D) None	
29) $f(z) = \frac{\sin z}{z}$ has a singularity	at $z = 0$ which is called	ed		[]
A) Simple pole C) Isolated essential 30) The image of the line $x = k$ und A) Parabola	D) Re	ot simple pole emovable OS <i>z</i> is C) Hyperbola		[D) None]
31) The pole of $f(z) = \frac{z}{(z+4)(z+4)(z+4)(z+4)(z+4)(z+4)(z+4)(z+4)$	$\overline{(x+1)}$ is]]
A) 0,-4 32) If $f(z)$ has a simple pole at 2	B) 0,4	C) 1,-4		D) -4,-1 []
A) 0	B) $Lt_{z \to -a}(z+a)f(z)$	C) $Lt_{z \to -a}(z - a)$	a)f(z)	D) None	
33) If $f(z)$ has a simple pole at z				[]
A) 0	B) $\underset{z \to -2}{Lt}(z+2)f(z)$	C) $Lt_{z \to -2}(z-2)y$	f(z)	D) None	
34) The value of $\int \frac{dz}{z-5} dz$, C:	z = 1 is			[]
A) 1	В) <i>πi</i>	C) 0	D) No	one	
35) The residue of $f(z) = \frac{z^2}{z^2 + a}$	\overline{z} at the pole $z = ia$ is			[]
	B) $-\frac{ia}{3}$	C) $\frac{a}{3}$	D) $\frac{ia}{2}$	<u>-</u>	
36) The pole of $f(z) = \frac{z}{z^2 + 1}$ is				[]
$\mathbf{A}) \pm i$	B) 0,i	C) ±1	D) N	lone	
37) The pole of $\int \frac{z^2 + 2z - 2}{z(z-4)(z-1)^2}$	lz is			[]
A) 0,4,-1	B) 0,-4,1	C) 0,4,1	D) 0	,-4,-1	

38) The bilinear transformation $w = \frac{az+b}{cz+d}$ is conformal if 1 ſ B) ad-bc=0 C) ab-cd=0 D) $ab-cd\neq 0$ A) $ad - bc \neq 0$ 39) The pole of $f(z) = \frac{z}{z^2 + 4}$ is 1 C) ± 2 D) None B) 0,2i A) $\pm 2i$ 40) If ad - bc = 0 then $\frac{b}{a} = \frac{d}{c}$ then every point of z-plane is a 1 ſ **B**) Critical points C) singular point D) None A) Inverse points

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

 Subject with Code : ENGINEERING MATHEMATICS-III (16HS612)

 Course & Branch: B.Tech – AG
 Year & Sem: II-B.Tech& I-Sem

 Regulation: R16

 UNIT-III

1)	Example of a transcendental equation		[]	
	A. $f(x) = x \log x - 1.2 = 0$ B. $f(x)$	$=x^{3}-x-1=0$			
	C. $f(x) = x^2 + x - 7 = 0$ D. Non	ie			
2)	If first two approximation x_0 and x_1 are roots of	of $x^3 - 9x + 1 = 0$ are 0 and	1 by Bisect	tion	
	method then x_2 is]]	
	A.1.5 B. 2.5 C. 0.5	D. 3.5			
3)	Example of a algebraic equation		[]	
	$A. f(x) = x \log x - 1.2 = 0$	B. $f(x) = x^3 - x - 1 = 0$			
	C. $f(x) = x^2 \tan x + 1 = 0$	D. None			
4)	In case of Bisection method, the convergence is	S	[]	
	A. linear B. 3	C. very slow I	D. quadrati	с	
5)	Bisection method is used for		[]	
	A. Solution of algebraic or transcendental equation B. Integration of a function				
	C. Differential of a function D. Solution of a function				
6)	For method of solution of equations	of the form $f(x) = 0$ approxim	ation		
	x_0 is to be very close to the root and $f(x_n) \neq$	± 0	[]	
	A. Bolzano B. Newton-Raphson	C.Secent	D. Chor	d	
7)	If the two roots are 1 &2 of $x^3 - x - 4 = 0$ by	Bisection method then x_1 is	[]	
	A.1.5 B. 2.5 C. 0.5	D. 3.5			

8) Example of a transcendental equation	[]
A. $f(x) = c_1 e^x + c_2 e^{-x} = 0$ B. $f(x) = x^2$	$+x-7=0$ C. $f(x)=x^2+5x-7=0$ D. None
9) If first two approximation x_0 and x_1 are x_1	roots of $2x - \log_{10}^{x} = 7$ are 3.5 and 4 by
Bisection method then x_2 is	[]
A. 1.75 B. 2.75 C	C. 3.75 D. 4.75
10) If first two approximation x_0 and x_1 are a	roots of $x^3 - 9x + 1 = 0$ are 0 and 1 by
Bisection method then x_2 is	[]
A.1.5 B. 2.5 C. 0.	5 D. 3.5
11) If first two approximation x_0 and x_1 are t	roots of $x^3 - x - 4 = 0$ are 1 and 2 by
Bisection method then x_2 is	[]
A.1.5 B. 2.5 C. 0.	
12) The order of convergence in Newton-Rapl A. 1 B. 3	hson method is [] C. 0 D.2
13) The Newton-Raphson method fails when	[]
A. $f^{1}(x)$ is negative B. $f^{1}(x)$ is zero	C. $f^{1}(x)$ is too large D. Never fails
14) In case of Bisection method, the converge	
A. linear B. 3	C. very slow D. quadratic
	(B) have opposite signs and a <b, first<="" td="" the=""></b,>
approximation of one of the roots $f(x)=0$, t af(a) - bf(b)	
A. $x_1 = \frac{af(a) - bf(b)}{f(a) - f(b)}$	B. $x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$
C. $x_1 = \frac{af(a) + bf(b)}{f(a) + f(b)}$	D. $x_1 = \frac{af(b) - bf(a)}{f(b) + f(a)}$
	tions of the form $f(x) = 0$ approximation x_0 is to
be very close to the root and $f(x_n) \neq 0$	
A. Bolzano B. Newton-Raphs	on C.Secent D. Chord
1	equation of the form $f(x) = 0$ the convergence of
the sequence $\langle x_n \rangle$ of midpoints to a root o	of $f(x) = 0$ in an interval (a,B) where $f(A)f(B) < 0$
is	[]
A. Assured and very fast	B. Not assured but very fast
C. Assured but very slow 18) Newton-Raphson method is used for	D. Independent on the sequence of point
A. Solution of algebraic or transcendental	equation B. Integration of a function
C. Differential of a function	D. Solution of a function
	ution of an equation of the form $f(x) = 0$ the
convergence of the sequence $\langle x_n \rangle$ iterates t	to a root of $f(x) = 0$ is []
A. Assured and very fast	B. Not assured but very fast
C. Assured but slow	D. Independent on the sequence of point

20) 12. In Newton – Raphson method we approximate the graph of f by suitable ſ 1 A. Chords **B**.Tangents C. Secants D. Parallel 21) Newton's iterative formula for finding a root of f(x) = 0 is ſ 1 B. $x_{n+1} = x_n - \frac{f(x_n)}{f''(x_n)}$ A. $x_{n+1} = x_n + \frac{f(x_n)}{f''(x_n)}$ C. $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$ D. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 22) Newton-Raphson method is also called 1 A. Method of tangent B. Method of false position C. Method of chord D. Method of secants 23) Among the method of solution of equation of the form f(x) = 0 the one which is used commonly for its simplicity and great speed is ---method L 1 B. Regula falsi C. Newton – Rasphson A. Secant D. Bolzano 24) The Regula Falsi method is related to _____ at a point of the curve 1 ſ A. Chord B. Ordinate C. Abscissa D. Tangent 25) The Newton – Raphson method is related to ____ ____ at a point of the curve Γ 1 C. Abscissa D. Tangent A. Chord B. Ordinate 26) Newton's iterative formula for finding the square root of a positive number N is 1 B. $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$ A. $x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{x_i} \right)$ C. $x_{i+1} = \left(x_i - \frac{N}{x_i}\right)$ D. $x_{i+1} = 2\left(x_i + \frac{N}{x_i}\right)$ 27) Newton's iterative formula for finding the reciprocal of a number N is ſ 1 A. $x_{n+1} = \left(x_n - \frac{N}{x^2} \right)$ B. $x_{n+1} = x_n \left(2 - \frac{N}{x} \right)$ C. $x_{n+1} = x_n (2 - Nx_n)$ D. $x_{n+1} = x_n (2 + Nx_n)$ 28) Regula- falsi method is used for 1 B. Integration of a function A. Solution of algebraic or transcendental equation C. Differential of a function D. Solution of a function 29) The cube root of 24 by Newton's formula taking $x_0 = 3$ is_] ſ A.1.889 B.2.889 C.5.889 D.4.889 30) The square root of 35 by Newton's formula taking $x_0 = 6$ is_____ Γ 1 B.5.916 C.6.916 A.7.916 D.4.916 31) If first two approximation x_0 and x_1 are roots of $xe^x = 2$ are 0 and 1 by Regula-falsi method then x_2 is ſ 1 A. 0.13575 B. 0.33575 C. 0.73575 D. 0.53575 32) If first two approximation x_0 and x_1 are roots of $x^3 - x - 4 = 0$ are 1 and 2 by Regula-falsi method then x_2 is ſ 1 A.4.666 B. 2.666 C. 3.666 D. 1.666

QUESTION BANK 2018

33) Newton's iterative formula for finding the pth root of a positive number N is []
A.
$$x_{n+1} = \frac{1}{p} \left((p-1)x_n + \frac{N}{x_n^{p-1}} \right)$$
 B. $x_{n+1} = \frac{1}{p} \left((p-1)x_n - \frac{N}{x_n^{p-1}} \right)$
34) The general iteration formula of the Regula Falsi method is []
A. $x_{n+1} = x_n + \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$ B. $x_{n+1} = x_n + \frac{x_n + x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$
C. $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$ D. $x_{n+1} = x_n + \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$
35) If first approximation root of $x^3 - 5x + 3 = 0$ is $x_0 = 0.64$ then x_1 by
Newton-Raphson method is []
A. $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$ B. $x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x_n} \right)$
36) Newton's iterative formula to find the value of \sqrt{N} is []
A. $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$ D. $x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x_n} \right)$
37) If first approximation root of $x^2 - 10 = 0$ is $x_0 = 3.8$ then x_1 by Newton-Raphson method is
A. $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$ B. $x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x_n^2} \right)$
38) Newton's iterative formula to find the value of \sqrt{N} is []
A. $x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x_n^2} \right)$ B. $x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x_n^2} \right)$
39) 36. If first two approximation x_0 and x_1 are roots of $2x - \log_{10}^x = 7$ are 3.5 and 4 by
Regula- Falsi method then x_2 is []
A. 1.7888 B. 2.7888 C. 3.7888 D. 4.7888
40) If first approximation root of $\cos x - x^2 - x = 0$ is $x_0 = 0.5$ then x_1 by
Newton-Raphson method is []
A. 1.7881 B. 2.7881 []
A. 1.7514 D. 3.3314

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –IV

	UNI			
1.	The $(n+1)^{th}$ order difference of a polynomial	of n^{th} degree is	[]
	A) Polynomial of n^{th} degree B) polynomial	mial of first degree C) constant	D) Zero	
2.	The n^{th} order difference of a polynomial of	n^{th} degree is	[]
	A) Polynomial of $(n-1)^{th}$ degree B) constant	t C) polynomial of first degre	e D)None	
3.	While evaluating a definite integral by Trape	ezoidal rule, the accuracy can be	increased	-
	by takingnumber of subintervals.		L]
	A) Larger B)smaller	C) Medium	D)None	
4.	In Simpson's 3/8 rule the number of subinte	rvals should be	[]
	A) Even B) Odd	C) Multiples of 8 D) M	-	
5.	. In Simpson's 1/3 rule the number of subint]
	A) EvenB) Multiples of 3	,	D) None	_
6.	The following formula is used for unequal in]
7	A) Newton's forward B)Langrange's	C) Newton's backward	D)None	,
7.	The principle of least squares states that	\mathbf{D}) $\mathbf{C}_{\mathbf{r}}$, \mathbf{c} \mathbf{f} , \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}	l]
	A) Sum of residuals is minimum	B) Sum of residuals	is maximum	
	C) Sum of squares of the residuals is minim	um D) None		
8.	If $y = a_1 + a_2 x$ the second normal equation	by least square method is_	[]
	A) $\sum y = na_1 + a_2 \sum x$ B) $\sum xy = a_1 \sum x$	$x + a_2 \sum x^2$ C) $\sum xy = na_1 + a_2 \sum x^2$	$\sum x$ D) None	
9.	If $y=6.077, Y=\ln(y)$ then $Y=$		[]
	A) 0.8045 B) 1.8045	C) 2.8045	D) 3.8045	
10.	If $y=4.077, Y=\ln(y)$ then $Y=$		[]
	A) 1.040 B) 1.405	C) 0.4059	D) None	
11.	If $y=8.3$, $Y=$ logy then $Y=$		[]
10	A) 0.9191 B) 9.191	C) 0.0919	D) None	-
12.	If $y = a + bx$ the first normal equation by lea		L]
	A) $\sum y = na + b \sum x$ B) $y = a \sum x^2 + b^2$	$p\sum x^3$ C) $\sum y = na+b$	D) None	

A) $\sum xy = a \sum x + b \sum x$		B) $\sum y = a \sum x + b$	$b\sum x^2 + c\sum x^3$]
C) $\sum xy = na + b \sum x$ 14. If $y = ax^2 + bx + c$ the	e third normal equation	by least square metho]
A) $\sum xy = a \sum x + b x + b \sum x + b x + b x + b x + b x + b x + b x + b x + b x + b x + b x + $		B) $\sum y = a \sum x^2$ D) $\sum xy^2 = a \sum x^2$	$+b\sum x + nc$ $x + b\sum x^{2} + c\sum x^{3}$	
15. In Simpson's $\frac{1}{3}$ rule	state that $\int_{a}^{b} f(x) dx =$		[]
A) $\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_n)]$	$(y_{2} + y_{2} + \dots + y_{n-1})]$	B) $\frac{h}{3}[(y_0 + y_n) + 2$	$2(y_1 + y_2 + \dots + y_{n-1})$)]
C) $\frac{h}{3}[(y_0 + y_n) + 2(y_2 + y_n)]$	$(y_1 + y_4 + \dots) + 4(y_1 + y_3)$, +)] D)	None	
16. The value of $\int_{0}^{1} \frac{1}{(1+1)^{2}} dt$	+x) dx by Simpson's 1/	/3 rule(take n=4) is	[]
A) 0.6931		C) -0.6931	D) None	
17. If $y = ax^2 + bx + c$ the	e second normal equatio	n by least square met	hod is []
$\mathbf{A})\sum_{xy=a}x^{3}+b$		B) $\sum y = a \sum x + b = a \sum x +$		
C) $\sum xy^2 = na + b\sum$	$x+c\sum x^2$	D) $\sum xy^2 = a \sum x$	$x+b\sum x^2+c\sum x^3$	
18. If $\sum x_i = 15, \sum y_i = 3$	$x_i y_i = 110, \sum x_i^2 = 1$]
18. If $\sum_{i=15, i=15, $	B) 1.52	$55, n = 4$ and $y = a_0$.	$+a_1 x$ Then $a_0 = [$ 1.2 D)]
	B) 1.52	$55, n = 4$ and $y = a_0$.	$+a_1 x$ Then $a_0 = [$ 1.2 D)] 0]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$	B) 1.52	$55, n = 4$ and $y = a_0$ C) ation by least square r	a_1x Then $a_0 = [$ 1.2 D) method is []
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$	B) 1.52 the second normal equa	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$	B) 1.52 the second normal equation $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$	$a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ 20. If $\sum x_i = 15$, $\sum y_i = 3$	B) 1.52 the second normal equation $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = 100$	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$	$a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2 x^3 + a_2 x^3 + a_2 x^3 + a_3 x^3 + a_4 x^3 + a_2 x^3 + a_3 x^3 + a_4 x^3 + a_5 $	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = \frac{100}{100}$ B) 1.52 e is	and $y = a_0 - C$ C C C C C C C	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ 20. If $\sum x_i = 15$, $\sum y_i = 3$ A) 2.2	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = \frac{100}{100}$ B) 1.52 e is	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$	$+ a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+ a_{1}x \text{ Then } a_{0} = [$ D) 0] 2]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ 20. If $\sum x_i = 15$, $\sum y_i = 3$ A) 2.2 21. The Exponential curve A) $y = ax^b$	B) 1.52 the second normal equation $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = 10$ B) 1.52 e is B) $y = -ax^b$	and $y = a_0 - C$ C C C C C C C	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$ D) 0 [D) None]]]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ 20. If $\sum x_i = 15$, $\sum y_i = 3 x^3 + a_1 x + a_2$ A) 2.2 21. The Exponential curve $x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_2 x + a_2 x + a_1 x + a_2 x + a_2 x + a_2 x + a_1 x + a_2 x$	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = 10$ B) 1.52 e is B) $y = -ax^b$	and $y = a_0$ $x^{55, n = 4}$ and $y = a_0$ $y = a_0 \sum x^2$ $y = a_0 \sum x^2$ $y = a_0 \sum x^2$ $x^{55, n = 5}$ and $y = a_0$ $x = a_0$ $x = a_0$ $x = a_0$ $x = a_0$ $x = a_0$ $y = ae^{bx}$	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$ D) 0 [D) None [h] 2]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ 20. If $\sum x_i = 15$, $\sum y_i = 3$ A) 2.2 21. The Exponential curve A) $y = ax^b$	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = 10$ B) 1.52 e is B) $y = -ax^b$ B) $y = ab^x$	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$ (c) $xy = a_0 \sum x^2$ (c) 1.2 (c) $y = ae^{bx}$ (c) $y = -ax^2$	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$ D) 0 [D) None [D) [D]]]]
A) 2.2 19. If $y = a_0x^2 + a_1x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1$ C) $\sum y = a_0 \sum x^3 + a_1$ 20. If $\sum x_i = 15$, $\sum y_i = 3$ A) 2.2 21. The Exponential curve A) $y = ax^b$ 22. The power curve is A) $y = ax^b$ 23. If $y = a + bx$ the second	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x$ $a_3 \sum x_i y_i = 110, \sum x_i^2 = 10$ B) 1.52 e is B) $y = -ax^b$ B) $y = ab^x$	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$ C) $xy = a_0 \sum x^2$ (C) $y = ae^{bx}$ C) $y = -ax^{bx}$ least square method is	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$ D) 0 [D) None [$a_{0}^{b} D \text{ D} \text{ None}$ $a_{0}^{b} D \text{ None}$] 2]]]
A) 2.2 19. If $y = a_0x^2 + a_1x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1$ C) $\sum y = a_0 \sum x^3 + a_1$ 20. If $\sum x_i = 15$, $\sum y_i = 3$ A) 2.2 21. The Exponential curve A) $y = ax^b$ 22. The power curve is A) $y = ax^b$ 23. If $y = a + bx$ the second	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x^2 + a_2 \sum x^2$	and $y = a_0$ C) Solution by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$ C) $y = ae^{bx}$ C) $y = -ax^2$ least square method is $\sum x^3$ C) $\sum xy = a \sum x^2$	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) nethod is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$ D) 0 [D) None [$a_{1}x + a_{1}x + b_{2}x^{2} + b_{2}x^{2}]$ D) None [D) None [D] Non] 2]]]
A) 2.2 19. If $y = a_0 x^2 + a_1 x + a_2$ A) $\sum xy = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ C) $\sum y = a_0 \sum x^3 + a_1 x + a_2$ 20. If $\sum x_i = 15$, $\sum y_i = 3x^3 + a_1 x + a_2 x + a_1 x + a_2 x$ A) 2.2 21. The Exponential curve $A_i = x^i + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_1 x + a_1 x + a_2 x + a_1 x + a_1 x + a_2 x + a_1 x + a_2 x + a_1 x + a_1 x + a_2 x + a_1 x + $	B) 1.52 the second normal equal $a_1 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x$ $a_1 \sum x^2 + a_2 \sum x$ $a_2 \sum x^2 + a_2 \sum x^2 + a_2 \sum x^2$	tion by least square r B) $\sum x^2 y = a_0 \sum x^2$ D) $\sum xy = a_0 \sum x^2$ $\sum 55, n = 5$ and $y = a_0$ C) 1.2 C) $y = ae^{bx}$ least square method is $\sum x^3$ C) $\sum xy = a \sum x^3$ t square method is	$+a_{1}x \text{ Then } a_{0} = [$ 1.2 D) method is [$x^{4} + a_{1}\sum x^{3} + a_{2}\sum x$ $x^{3} + a_{1}\sum x^{2} + na_{2}$ $+a_{1}x \text{ Then } a_{0} = [$ D) 0 [D) None [$a_{1}b_{1} = 0$ $a_{2}b_{2} = 0$ $b_{1}b_{2} = 0$ $b_{2}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{3}b_{3} = 0$ $b_{3}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{3}b_{3} = 0$ $b_{3}b_{3} = 0$ $b_{3}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{2} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{3} = 0$ $b_{2}b_{3} = 0$ $b_{1}b_{2} = 0$ $b_{1}b_{2} = 0$ $b_{2}b_{2} = 0$ $b_{1}b_{2} = 0$ b_{1] 2]]]]

25. In Simpson's 3/8 rule the number of subintervals should be 1 **C**) Multiples of 3 A) Even B) Odd D) None 26. By Trapezoidal rule, $\int f(x)dx =$] ſ A) $\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$ B) $\frac{h}{2}[(y_0 + y_n) - 2(y_1 + y_2 + \dots + y_{n-1})]$ C) $\frac{h}{2}[(y_0 - y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$ D) $\frac{h}{2}[(y_0 - y_n) - 2(y_1 + y_2 + \dots + y_{n-1})]$ 27. In Simpson's $\frac{1}{2}$ rule state that $\int_{a}^{b} f(x) dx =$ 1 A) $\frac{h}{3}[(y_0 + y_n) + 2(y_2 + y_4 + \dots) + 4(y_1 + y_3 + \dots)]$ B) $\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$ C) $\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$ D) None 28. In the general quadrature formula n=3 gives 1 B) Simpson's $\frac{1}{3}$ rule C) Simpson's $\frac{3}{8}$ rule D) Weddle's rule A) Trapezoidal rule 29. The value of $\int_{1}^{2} 1/x \, dx$ by Trapezoidal rule(take n=4) is] ſ B) 0.5 A) 0.6931 C) -0.6931 D) None 30. The value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}$ rule (take n=4) is ſ 1 A) 0.6854 **B)** 0.7854 C) 0.8854 D) 0.9854 31. The value of $\int_0^1 1/(1+x) dx$ by Simpson's 1/3 rule(take n=4) is] ſ A) 0.6931 C) -0.6931 B) 0.5 D) None 32. The value of $\int x^3 dx$ by Trapezoidal rule (take n=4) is ſ 1 A) 0.25 B) 1.25 C) 2.25 D) 3.25 33. Equation of the straight is] D) $y = a + bx^{2}$ **C**) y = a + bxA) y = ax - bB) y = a - bx34. If $y = ax^b$ the first normal equation is $\sum \log y =$ _____ (n=No.of points given) ſ 1 B) $n \log a + b \sum x$ C) $a \sum x + b \sum \log x$ D) $n \log a + b \sum \log x$ A) $na + b \sum x$

35. In Simpson's	$\frac{3}{8}$ rule state that	$\int_{a}^{b} f(x) \mathrm{d}x =$]]
A) $\frac{3h}{8}[(y_0 +$	y_n) + 3(y_1 + y_2 + y_2	y_4 + y_{n-1}) + 2($y_3 + y_6$	$+ y_9 \dots + y_n)$		
B) $\frac{h}{3}[(y_0 + y_0)]$	$(y_n) + 2(y_2 + y_4 + \dots$) + 4($y_1 + y_3 +$)]			
2) + 4($y_1 + y_3 +$)]	D) None		
-	logy then Y=			[]
	B) 0.9685		D) 0.9685		
37. 7. In simpson	n's $\frac{1}{3}$ rule the num	nber of sub intervals should	l be	[]
A) even	B)odd	C)multiple of 3	D) None		
38. In simpson's	$\frac{1}{3}$ rule the number	er of ordinates should be	`		[
] A) Even	B) odd	C) multiple of 3	D) None		
39. In simpson's	$\frac{3}{8}$ rule the number	er of sub intervals should be	e	[]
A) Even	B) odd	C) multiple of 3	D) None		
40. The value of	$\int_{0}^{1} \frac{1}{(1+x)} dx$ by	y simpson's 1/3 rule(take n	=4) is	[]
A) 0.693		C) 0.456	D) 56		

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING MATHEMATICS-III(16HS612)Course & Branch: B.Tech – AGYear & Sem: II-B.Tech& I-SemRegulation: R16

UNIT –V

1) Successive approximations are used in []
A) Milne's method B) Picard's method C) Taylor series method D) none	
2) Which of the following in a step by step method: []
A) Taylor's series B) Adam's bashforth C)Picard's D) none	
3) Runge-kutta method is self starting method: []
A) true B) false C) we can't say D) none	
4) The second order Runga-kutta formula is []
A) Euler's methodB) Newton's method	
C) Modified Euler's method D) none	
5) Euler's nth term formula is []
A) $y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$ B) $y_{n+1} = y_{n-1} + hf(x_{n-1}, y_{n-1})$	
C) $y_n = y_n + hf(x_n, y_{n-1})$ D) none	
6) Which of the following is best for solving initial value problems. []
A) Euler's method B) Modified Euler's method	
C) Taylor's series method D) Runge-kutta method of order 4	
7) To obtain reasonable accuracy value in Euler's method, we have to h value is	[]
A) SmallB) largeC) 0D) none	
8) If 'n' conditions are specified at the initial point, then it is called []
A) Initial value problem B) final value problem	
C) Boundary value problem D) None	
9) If 'n' conditions are specified at two or more points, then it is called []
A) Initial value problem B) final value problem	
C) Boundary value problem D) None	
10) The first order Runga-kutta formula is []
A) Euler's method B) Newton's method	
C) Modified Euler's method D) None	
11) The second order Runge-Kutta formula is $y_1 = $]
A) $y_0 + (k_1 + k_2)$ B) $y_0 - (k_1 + k_2)$ C) $y_0 + \frac{1}{2}(k_1 + k_2)$ D) $y_0 - \frac{1}{2}(k_1 + k_2)$)
12) The n th difference of a n th degree polynomial is []
A) ConstantB) ZeroC) oneD) None	
13) Successive approximations used inmethod []
A) Euler's B) Taylor's C) Picard's D) R-K	

14) The taylor's for $f(x) = \log(1+x)$ is 1 Γ A) $x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$ B) $x + \frac{x^3}{3} - \dots$ C) Both a and b E 15) Solve $y^1 = x + y$, y(0) = 1, find $y_1 = y(0.1)$ by using Euler's method D) None ſ 1 C) 2.1 **A**) 1.1 B) 1.26 D) 1.86 16) The R-K method is a method ſ 1 A) Picard's method B) Euler's method A) Picard's method C) Milne's method 17) Using Euler's method $y^1 = \frac{y-x}{y+x}$, y(0)=1 and h=0.02 give $y_1=....$ ſ 1 C) 2.02 A) 0.02 B) 1.02 D) 3.02 18) Using Euler's method $y^1 = \frac{y-x}{y+x}$, y(0)=1 then the picard's method the value of $y^{1}(x) = \dots$ ſ] **B**) 1-x+2log(1+x) C) $x+2\log(1+x)$ A) $1 + 2\log(1+x)$ D) None 19) If $\frac{dy}{dx}$ = x-y and y(0)=1 then by picard's method the value of y¹(1) is ... Γ 1 C) 2.905 D) None A) 0.905 B) 1.905 20) Euler's first approximation formula is 1 ſ B) $y_1 = y_1 + hf(x_0, y_0)$ A) $y_1 = y_1 + hf(x_1, y_1)$ C) $y_1 = y_0 + hf(x_0, y_0)$ 21) Second order R-K Method formula is D) $y_0 = y_0 + hf(x_0, y_0)$ 1 A) $y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$ B) $y_1 = y_0 + \frac{1}{4}(k_1 + 4k_2 + k_3)$ C) $y_1 = y_0 + \frac{1}{6}(k_1 + k_2)$ D) $y_1 = y_1 + \frac{1}{2}(k_1 + k_2)$ 22) The integrating factor of $\frac{dy}{dx} - y = x$ 1 A) e^{2x} B) e^{-2x} C) e^x D) e^{-x} 23) The second order Runge-Kutta formula is $y_1 =$ []A) $y_0 + (k_1 + k_2)$ B) $y_0 - (k_1 + k_2)$ C) $y_0 + \frac{1}{2}(k_1 + k_2)$ D) $y_0 - \frac{1}{2}(k_1 + k_2)$ 24) Using Euler's method $y^1 = \frac{y - x}{y + x}$, y(0) = 1 and h = 0.02 give $y_1 = \dots$ []A) 0.02B) 1.02C) 2.02D) 3.0225) Runge-kutta method is self starting method: 1 A) False B) we can't say C) True D) None 26) The integrating factor of $\frac{dy}{dx} + y = x$ ſ 1 A) e^{2x} A) e^{2x} B) e^{2x} C) 27 Using Euler's method $y^1 = \frac{y-x}{y+x}$, y(0)=1 and h=0.02 give $y_1=....$ [B) e^{-2x} 1 A) 0.02 **B**)1.02 C)2.02 D) 3.02 28) If $\frac{dy}{dx}$ = x-y and y(0)=1 then by Picard's method the value of y¹(1) is ... [1 C) 1.905 B) -0.905 A) 0.905 D) None 29) If y' = -y, y(0) = 1 by Euler's method the value of y(0.1) is 1 ſ A) 0.9 C) -1 B) 0.1 D) -0.9

30) If $\frac{dy}{dx} = 1 + xy, y(0)$	= 1 then by Picard's m	ethod the value of [$y^{1}(x)$ is []
A) $1 + x + \frac{x^2}{2}$	B) $1 - x - \frac{x^2}{2}$	C) $1 + \frac{x^2}{2}$	D) $x + \frac{x^2}{2}$	
31) The integrating fac	tor of $\frac{dy}{dx} + \frac{y}{x} = x$		[]
A) x^2		C) <i>x</i>	D) e^{-x}	
32) If $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y((0) = 1, and h=0.2 then the function of the	he value of k_1 in 4^t	^h order R-K method	is
A) 0 B)0.) 0.3 []
33) Using Euler's meth	and $y^1 = \frac{y-x}{y+x}$, $y(0) = 1$ at	nd h=0.01 give y_1 =.	[]
A) 0.01	B) 1.01	C) 2.01 D		
34) If $\frac{dy}{dx} = y - x^2$, $y(0)$	= 1, then by Picard's r	nethod the value of	y ¹ (x) is []
	B) $1 + x - \frac{x^3}{3}$	C) $1 - x - \frac{x^3}{3}$	D) $-1 + x + \frac{x}{2}$	$\frac{2}{2}$
35) The integrating fac	ctor of $\frac{dy}{dy} - \frac{y}{y} = x$		[]
A) x^2	$\begin{array}{cc} ax & x \\ \mathbf{B} & -x \end{array}$	C) _x	D) <i>e</i> ⁻	- <i>x</i>
36) The Third order R	· · · · ·	- , ,,	[]
A) $y_1 = y_0 + \frac{1}{6}(k_1 - k_1)$	$+k_2+k_3$)	B) $y_1 = y_0 + \frac{1}{6}(h)$	$k_1 - 4k_2 + k_3 \big)$	
C) $y_1 = y_0 + \frac{1}{6} (k_1 + \frac{1}{6})$	$+4k_2+k_3$)	D) $y_1 = y_0 + \frac{1}{6} (x_1 + y_0) + \frac{1}{$	$k_1 + k_2 + 4k_3 \big)$	
37) Using Euler's meth	and $y^1 = \frac{y - x}{y + x}$, $y(0) = 1$ a	nd h= 0.04 give y ₁ =.	[]
A) 0.04	B)1.04	C)2.04		
38) If $\frac{dy}{dx} = x-y$ and $y(0)$)=1 then by Picard's m	ethod the value of y	$V^1(0.2)$ is []
A) 0.72	B) -0.72	C) 0.82	D) None	
39) If $y' = -y, y(0) = 0$) by Euler's method th	e value of $y(0.1)$ is	[]
A) 0.9	B) 0.1	C) -1	D) 0	
40) If $\frac{dy}{dx} = x + y, y(0) =$	= 1, then by Picard's m	ethod the value of y	¹ (x) is []
A) $1 - x + \frac{x^2}{2}$ B)	$1 + x - \frac{x^2}{2}$	C) $1 + x + \frac{x^2}{2}$	D) $-1 + x + \frac{x}{2}$	$\frac{2}{2}$